par Landschutzer, Peter;Laruelle, Goulven Gildas ;Roobaert, Alizée ;Regnier, Pierre
Référence Earth System Science Data, 12, 4, page (2537-2553)
Publication Publié, 2020-10
Article révisé par les pairs
Résumé : In this study, we present the first combined open- and coastal-ocean pCO2 mapped monthly climatology (Landschützer et al., 2020b,, oceans/MPI-ULB-SOM_FFN_clim.html, last access: 8 April 2020) constructed from observations collected between 1998 and 2015 extracted from the Surface Ocean CO2 Atlas (SOCAT) database. We combine two neural network-based pCO2 products, one from the open ocean and the other from the coastal ocean, and investigate their consistency along their common overlap areas. While the difference between open- and coastal-ocean estimates along the overlap area increases with latitude, it remains close to 0 μatm globally. Stronger discrepancies, however, exist on the regional level resulting in differences that exceed 10% of the climatological mean pCO2, or an order of magnitude larger than the uncertainty from state-of-the-art measurements. This also illustrates the potential of such an analysis to highlight where we lack a good representation of the aquatic continuum and future research should be dedicated. A regional analysis further shows that the seasonal carbon dynamics at the coast-open interface are well represented in our climatology. While our combined product is only a first step towards a true representation of both the open-ocean and the coastal-ocean air-sea CO2 flux in marine carbon budgets, we show it is a feasible task and the present data product already constitutes a valuable tool to investigate and quantify the dynamics of the air-sea CO2 exchange consistently for oceanic regions regardless of its distance to the coast.