Thèse de doctorat
Résumé : Over the last decade, we have witnessed the emergence of networks in a wide spectrum of application domains, ranging from social and information networks to biological and transportation networks.Graphs provide a solid theoretical foundation for modeling complex networks and revealing valuable insights from both the network structure and the data embedded within its entities.As the business and social environments are getting increasingly complex and interconnected, graphs became a widespread abstraction at the core of the information infrastructure supporting those environments. Modern information systems consist of a large number of sophisticated and interacting business entities that naturally form graphs. In particular, integrating graphs into data warehouse systems received a lot of interest from both academia and industry. Indeed, data warehouses are the central enterprise's information repository and are critical for proper decision support and future planning. Graph warehousing is emerging as the field that extends current information systems with graph management and analytics capabilities. Many approaches were proposed to address the graph data warehousing challenge. These efforts laid the foundation for multidimensional modeling and analysis of graphs. However, most of the proposed approaches partially tackle the graph warehousing problem by being restricted to simple abstractions such as homogeneous graphs or ignoring important topics such as multidimensional integrity constraints and dimension hierarchies.In this dissertation, we conduct a systematic study of the graph data warehousing topic and address the key challenges of database and multidimensional modeling of graphs.We first propose GRAD, a new graph database model tailored for graph warehousing and OLAP analytics. GRAD aims to provide analysts with a set of simple, well-defined, and adaptable conceptual components to support rich semantics and perform complex analysis on graphs.Then, we define the multidimensional concepts for heterogeneous attributed graphs and highlight the new types of measures that could be derived. We project this multidimensional model on property graphs and explore how to extract the candidate multidimensional concepts and build graph cubes. Then, we extend the multidimensional model by integrating GRAD and show how GRAD facilitates multidimensional graph modeling, and enables supporting dimension hierarchies and building new types of OLAP cubes on graphs.Afterward, we present TopoGraph, a graph data warehousing framework that extends current graph warehousing models with new types of cubes and queries combining graph-oriented and OLAP querying. TopoGraph goes beyond traditional OLAP cubes, which process value-based grouping of tables, by considering also the topological properties of the graph elements. And it goes beyond current graph warehousing models by proposing new types of graph cubes. These cubes embed a rich repertoire of measures that could be represented with numerical values, with entire graphs, or as a combination of them.Finally, we propose an architecture of the graph data warehouse and describe its main building blocks and the remaining gaps. The various components of the graph warehousing framework can be effectively leveraged as a foundation for designing and building industry-grade graph data warehouses.We believe that our research in this thesis brings us a step closer towards a better understanding of graph warehousing. Yet, the models and framework we proposed are the tip of the iceberg. The marriage of graph and warehousing technologies will bring many exciting research opportunities, which we briefly discuss at the end of the thesis.