Résumé : The genetic disease cystic fibrosis is the most common lethal genetic disease in Western countries. People born with cystic fibrosis suffer from many health issues including severe respiratory problems, inflammation and recurrent lung infections that can become fatal. The disease is caused by the loss of function of a protein called the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an chloride ion channel and, in healthy people, its activity assures correct water and salt transport across the cell membrane. Most cases of cystic fibrosis are caused by a genetic defect that leads to the deletion of phenylalanine 508 (F508del) in the amino acid sequence of the protein. The molecular mechanism by which F508del leads to loss of function of the CFTR channel is still poorly understood. The mutation is found in the first nucleotide binding domain (NBD1) and studies have shown that it causes misfolding of CFTR and subsequent degradation of the protein by the cellular quality control system. It is established that the mutation affects stability and dynamics of NBD1 but does not alter its structure significantly. This destabilizing effect of F508del can be compensated by specific mutations distributed over different regions of NBD1, leading to recovery of membrane expression of a functional channel. A surprising example involves the regulatory insertion (RI), a 32-residue long segment found in all CFTR orthologs but not in related channels or transporters. The RI is not resolved in crystal structures of NBD1 nor cryo-EM structures of CFTR and has been described as intrinsically disordered. Its functional role in CFTR is unknown. Removal of the RI increases the stability of the NBD1 domain and, in the context of F508del-CFTR, this deletion restores maturation, cell surface expression and activity of the mutant channel. We probed the effect of the RI on NBD1 structure, dynamics and allostery using X-ray crystallography, single molecule FRET and hydrogen-deuterium exchange. We discovered that the RI enables an alternative NBD1 fold which departs markedly from the canonical fold previously observed for this domain and the NBDs of other ABC transporters. The conformational equilibrium between these states is regulated by ATP binding and affected by disease-associated conditions. Aside from clear alterations to structure and dynamics of NBD1, the RI also affects allostery, i.e. how NBD1 structure and dynamics respond to perturbations such as ligand binding. Finally, we show that the RI-enabled conformation is adopted in full-length CFTR and associated with increased channel activity in electrophysiological assays. We then identify an allosteric network that links the structural hotspots of the conformational changes to F508 and its surroundings. Lastly, we argue that these conformational changes lead to unfolding of NBD1 in the context of F508del, providing a new model for the molecular mechanism leading to pathogenesis.