Résumé : A field, petrographic and geochemical study of two Triassic–Jurassic carbonate successions from the Maritime Alps, SE France, indicates that dolomitization is related to episodic fracturing and the flow of hydrothermal fluids. The mechanism governing hydrothermal fluids has been documented with the best possible spatio-temporal resolutions specifying the migration and trapping of hydrothermal fluids as a function of depth. This is rarely reported in the literature, as it requires a very wide range of disciplines from facies analysis (petrography) to very diverse and advanced chemical methods (elemental analysis, isotope geochemistry, microthermometry). In most cases, our different recognized diagenetic phases were mechanically separated on a centimetric scale and analyzed separately. The wide range of the δ18 OVPDB and87Sr/86Sr values of diagenetic carbonates reflect three main diagenetic realms, including: (1) the formation of replacive dolomites (Type I) in the eogenetic realm, (2) formation of coarse to very coarse crystalline saddle dolomites (Types II and Type III) in the shallow to deep burial mesogenetic realm, respectively, and (3) telogenetic formation of a late calcite cement (C1) in the telogenetic realm due to the uplift incursion of meteoric waters. The Triassic dolomites show a lower87 Sr/86Sr ratio (mean = 0.709125) compared to the Jurassic dolomites (mean = 0.710065). The Jurassic calcite (C1J) shows lower Sr isotopic ratios than the Triassic C1T calcite. These are probably linked to the pulses of the seafloor’s hydrothermal activity and to an increase in the continental riverine input during Late Cretaceous and Early Cenozoic times. This study adds a new insight into the burial diagenetic conditions during multiple hydrothermal flow events.