Résumé : This paper presents the technology to control the shape of thin polymer doubly curved shell structures with a unimorph layer of strain actuators to achieve high quality, light-weight, foldable space reflectors. The selected active material is PVDF-TrFE deposited by spin coating; it is electrostrictive, isotropic and enjoys an excellent piezoelectric coefficient d31 ≃ 15 pC/N when properly annealed, but has a nonlinear, quadratic behavior. The strain actuation is controlled by an array of segmented electrodes. The purpose of this study is to evaluate the material properties achieved in the manufacturing process. A simple, unidirectional model of electrostrictive material is considered and the material constants (electrostrictive constant Q33, piezoelectric constant d31, spontaneous polarization Ps and poling strain SP) are estimated from various static and dynamic experiments. The final part of the paper illustrates the control authority on a small demonstrator with seven independent electrodes and compares the experimental results with numerical finite element simulations.