par Huynh, Tony ;Joret, Gwenaël ;Micek, Piotr;Wood, David
Référence Combinatorica, 40, page (839-868)
Publication Publié, 2020-08-01
Référence Combinatorica, 40, page (839-868)
Publication Publié, 2020-08-01
Article révisé par les pairs
Résumé : | We prove a conjecture of Seymour (1993) stating that for every apex-forest H1 and out-erplanar graph H2 there is an integer p such that every 2-connected graph of pathwidth at least p contains H1 or H2 as a minor. An independent proof was recently obtained by Dang and Thomas [3]. |