par Bousquet, Nicolas;Cames Van Batenburg, Wouter
;Esperet, Louis;Joret, Gwenaël
;Lochet, William;Muller, Carole
;Pirot, François 
Référence Combinatorica, 41, page (299-318)
Publication Publié, 2021-07-01




Référence Combinatorica, 41, page (299-318)
Publication Publié, 2021-07-01
Article révisé par les pairs
Résumé : | We prove that for every integer t ⩾ 1 there exists a constant ct such that for every Kt-minor-free graph G, and every set S of balls in G, the minimum size of a set of vertices of G intersecting all the balls of S is at most ct times the maximum number of vertex-disjoint balls in S. This was conjectured by Chepoi, Estellon, and Vaxès in 2007 in the special case of planar graphs and of balls having the same radius. |