Résumé : The reversal of the antinociceptive effect of systemically administered acetaminophen (paracetamol) by intrathecal administration of the potent 5-HT(3) receptor antagonist tropisetron has been reported in rats subjected to the paw pressure test, suggesting that acetaminophen action is mediated through spinal 5-HT(3) receptors. However, more recent data, showing differences between the pharmacological profiles of various 5-HT(3) receptor antagonists, led us to reconsider the involvement of spinal 5-HT(3) receptors. To address this question, two different approaches were used: 1) electrophysiological recordings to assess whether acetaminophen directly modulates 5-HT(3) receptor activity and 2) pharmacological investigations with various 5-HT(3) receptor antagonists and spinal 5-HT(3) receptors antisense oligodeoxynucleotides (AODNs) to determine how those treatments might affect the antinociceptive action of acetaminophen. Electrophysiological studies demonstrated that acetaminophen had no direct agonist or antagonist effects on 5-HT(3A) receptors. Unlike tropisetron, other 5-HT(3) receptor antagonists, such as ondansetron and granisetron, injected intrathecally were unable to reverse the antinociceptive effect of acetaminophen. Moreover, pretreatment with AODNs did not reverse the acetaminophen-induced antinociceptive effect, although it suppressed the antinociceptive effect of m-chlorophenylbiguanide, a specific agonist of 5-HT(3) receptors, and significantly reduced (30%) the expression of these receptors in the dorsal horn of the spinal cord. These results suggest that acetaminophen-induced antinociceptive action involves a spinal tropisetron-sensitive receptor that is not the 5-HT(3) receptor and that remains to be identified.