Résumé : Thermal poling, a technique to create permanently effective second-order susceptibility in silica optical fibers, has recently been improved by the discovery of an "induction poling" technique1 and the adoption of liquid electrodes2, allowing for poling fibers of any length and geometry. Nevertheless, the nonlinearity created via thermal poling is always limited by the ooelig;'(3)of the optical fiber material and by the maximum electric field that can be frozen inside the glass. For these reasons research is ongoing to determine routes for further improving the nonlinear effects due to the thermal poling process. In this work, we propose to enhance the effects of the thermal poling by exploiting the intrinsic nonlinear properties of some 2D materials3, which are deposited inside the cladding holes of a twin-hole silica fiber. The materials we focused on are 2D Transition Metal Chalcogenide (2D TMDC) MoS2 and WS2 and the technique adopted to realize the deposition inside the cladding channels of a twin-hole step index silica fiber consists of a thermal decomposition process4 of the precursor ammonium tetrathiomolybdate (NH4)2MoS4 in 6% H2/Ar flow. The technique has allowed us to uniformly coat the two cladding channels for a length of 25 cm with a film nominally consisting in a bi-layer of the 2D materials. A Raman based analysis has been used to test the morphology of the coating. The fiber deposited with 2D materials was later thermally poled and periodically erased via exposure to UV light to reach the QPM condition at a wavelength of 1550 nm. The effective oœ'(2) of the fiber was measured via SHG for both the deposited and the pristine fiber, showing an enhancement of the nonlinearity in favor of the deposited one. The phenomenon can be explained by the exploitation of a higher oœ'(3) seen by the pump wave due to the presence of the 2D layer deposited inside the cladding holes and opens the possibility of exploiting the higher intrinsic material oœ'(2), in case of a periodic patterning/synthesis of the TMDC.