par Duerinckx, Mitia ;Gloria, Antoine ;Otto, Felix
Référence Communications in Mathematical Physics, 377, page (259-306)
Publication Publié, 2020-03-17
Article révisé par les pairs
Résumé : Four quantities are fundamental in homogenization of elliptic systems in divergence form and in its applications: the field and the flux of the solution operator (applied to a general deterministic right-hand side), and the field and the flux of the corrector. Homogenization is the study of the large-scale properties of these objects. In case of random coefficients, these quantities fluctuate and their fluctuations are a priori unrelated. Depending on the law of the coefficient field, and in particular on the decay of its correlations on large scales, these fluctuations may display different scalings and different limiting laws (if any). In this contribution, we identify another crucial intrinsic quantity, motivated by H-convergence, which we refer to as the homogenization commutator and is related to variational quantities first considered by Armstrong and Smart. In the simplified setting of the random conductance model, we show what we believe to be a general principle, namely that the homogenization commutator drives at leading order the fluctuations of each of the four other quantities in a strong norm in probability, which is expressed in form of a suitable two-scale expansion and reveals the pathwise structure of fluctuations in stochastic homogenization. In addition, we show that the (rescaled) homogenization commutator converges in law to a Gaussian white noise, and we analyze to which precision the covariance tensor that characterizes the latter can be extracted from the representative volume element method. This collection of results constitutes a new theory of fluctuations in stochastic homogenization that holds in any dimension and yields optimal rates. Extensions to the (non-symmetric) continuum setting are also discussed, the details of which are postponed to forthcoming works.