par Hosseinzadeh, Medhi ;Garone, Emanuele
Référence IEEE transactions on automatic control, 65, 1, page (1-11), 8675479
Publication Publié, 2020-01-01
Article révisé par les pairs
Résumé : The explicit reference governor (ERG) is a simple and systematic approach that provides constraint handling capabilities to prestabilized systems. The basic idea behind this approach is to translate state and input constraints into an upper-bound on the value of the Lyapunov function, which is then enforced by suitably manipulating the derivative of the applied reference. When designing the ERG, one of the main challenges is the determination of an upper-bound on the value of the Lyapunov function that ensures constraints satisfaction. This paper proposes a systematic approach for estimating online the optimal upper-bound for systems subject to the intersection of concave constraints. To do this, the Barrier function method is used. The effect of the estimation error caused by the time-varying nature of the auxiliary reference on the constraint satisfaction capability of the ERG is studied analytically. A procedure is proposed to modify the estimated upper-bound to avoid constraints violation in the presence of estimation errors. The effectiveness of the proposed scheme is demonstrated through a simulation study on an overhead gantry crane system.