par Kas, Milaim ;Loreau, Jérôme ;Liévin, Jacques ;Vaeck, Nathalie
Référence The Journal of Physical Chemistry. A, 123, 41, page (8893-8906)
Publication Publié, 2019-10-01
Article révisé par les pairs
Résumé : We present a theoretical investigation of the hydrated hydroxide anion clusters, OH(H2O)n-, and of the collisional complexes, H-OH(H2O)n- and Rb-OH(H2O)n- (with n = 1-4). The MP2 and CCSD(T) methods are used to calculate interaction energies, optimized geometries, and vertical detachment energies. Parts of the potential energy surfaces are explored with a focus on the autodetachment region. We point out the importance of diffuse functions to correctly describe the latter. We use our results to discuss the different water loss and electronic detachment channels, which are the main reaction routes at room temperature and below. In particular, we have considered a direct and an indirect process for the electronic detachment, depending on whether water loss follows or precedes the detachment of the excess electron. We use our results to discuss the implications for astrochemistry and hybrid trap experiments in the context of cold chemistry.