Article révisé par les pairs
Résumé : The adhesion properties and the mobility of biological cells play key roles in the propagation of cancer. These properties are expected to depend on intracellular processes and on the concentrations of chemicals inside the cell. While most existing reaction-diffusion models for cell migration consider that cell mobility and proliferation rate are constant or depend on an external diffusing species, they do not include the gene expression dynamics taking place in moving cells that affect cellular transport. In this work, we propose a multiscale model where mobility and proliferation depend explicitly on the cell's internal state. We focus more specifically on the case of cellular mobility in epithelial tissues. Wound-healing experiments have demonstrated that the loss of a key protein, E-cadherin, results in a significant increase in both mobility and invasiveness of epithelial cells, with dramatic consequences on cancer progression. We can reproduce the results of these experiments under various genetic conditions with a single set of parameters.