Article révisé par les pairs
Résumé : Hypothesis: The functionalization of gold nanoparticles is commonly based on the use of thiol groups for the anchoring of organic ligands. To functionalize gold nanoparticles with mixed layers in defined proportions, different thiolated ligands are often used and assumed to graft equally on the surface. This assumption is however generally not verified and a quantitative investigation of the grafting density of mixed organic layers of thiolated ligands is therefore required. Experiments: Gold nanoparticles were exposed to solutions containing various proportions of two PEG ligands containing a thiol group at one extremity and a methoxy, carboxylate, or alkyne group at the other. A systematic study was performed on the resulting particles in order to quantify the composition of the PEG layer by quantitative 1H NMR spectroscopy. Findings: Our results showed that the grafting of the PEG ligands with either a carboxylate or an alkyne group is strongly hindered in the presence of the methylated PEG ligands, despite the use of identical thiol anchoring groups. This is the first report on the quantification of mixed layers of PEGylated ligands on gold nanoparticles that demonstrates the severe limits of thiol chemistry for the functionalization of gold nanoparticles with mixed monolayers.