Résumé : There has been a high increase in demand for high-performance output filtersfor power converters, possessing high attenuation and high bandwidth. Manyemerging applications require high bandwidth and low output distortion,e.g. controllable power sources and grid-tied converters. Moreover, athigh switching frequency, the filter attenuation needs to comply with theelectromagnetic interference (EMI) standard, which is more stringent than theconventional grid-harmonic standard. Designing an output filter to achieveboth high attenuation and high bandwidth is extremely challenging. These newrequirements stipulate research in new design tools and modeling approaches.This thesis focuses on the various aspects of the design, modeling and validationof output filters, namely design of resonant-damping controller and componentvalues, winding loss modeling, and winding loss measurement. The thesis aimsto improve and facilitate these aspects by introducing a novel component-sizingand control co-design method, homogenization-based finite element (FE) methodfor winding-loss computation and a more accurate method of winding-resistanceextraction.The first part of the thesis presents a virtual circuit control (VCC) methodto design a resonant-damping discrete-time controller for grid-tied voltagesource converters with output filters. The method provides an intuitive wayto specify the desired closed-loop behavior by means of a virtual referencecircuit rather than abstract mathematical criteria such as closed-loop poles andweighting matrices. Therefore, the existing passive filter designs, which cannotbe practically implemented due to excessive losses, and the well-establishedtheory of filters can be exploited. The grid current and the common-modecapacitor voltage, which are the primary control objectives, inherit the mainproperties of their underlying virtual reference circuits, e.g. resonance dampingand low-frequency behavior. Accordingly, the voltage/current controllers canbe easily designed based on the low-frequency behavior of virtual circuits. Themethod can also be straightforwardly equipped with conventional controllers to enhance system performance, such as harmonic compensation. For validation, the simulation and experiment are performed to control a three-phase grid-tiedVSC with an LCL filter. The results verify the effectiveness of the resonantdamping and dynamic performance.Subsequently, the VCC method is employed to formulate a novel co-designmethod of component sizing and control for actively-damped LC-ladder outputfilters of general order. This method executes the VCC method in reverse. Thevirtual circuit is firstly designed based on a singly-terminated ladder network.Starting from a desired closed-loop transfer function, the virtual circuit issynthesized to meet the physical requirements. The physical circuit is thenrealized by adopting the same components as the ones of the virtual circuitfrom the filter capacitor onward to the output. Therefore, it simultaneouslytackles the design of the filter parameters and the resonant-damping control.The design example of LCL filters for a three-phase grid-tied voltage-sourceconverter (VSC) is demonstrated and experimentally tested. The measuredbandwidth of the small-signal reference tracking transfer function of the outputcurrent agrees with the theoretical model. At steady state, the output currentshows excellent sinusoidal waveform as desired. Furthermore, the feasibleextension to a design of 5th-order LCLCL filter by means of loss-volume Paretomultiobjective optimization has been demonstrated and compared with the3rd-order LCL counterpart. The use of the former shows promising volumereduction for the applications requiring high bandwidth and/or high attenuation.The third part of the thesis investigates a frequency-domain finite-element(FE) homogenization method for litz-wire bundles. The approach consists inadopting a frequency-dependent complex reluctivity in the litz-wire bundlesand a frequency-dependent complex impedance in the electrical circuit, bothin terms of dimensionless coefficients. They represent the skin and proximityeffects, respectively. The litz-wire bundles become homogeneous conductorswhich are easy to integrate into an FE model. The homogenization method isvalidated by a 2-D transformer model and a 3-D axisymmetric inductor model ofwhich the reference solutions are computed based on finely discretized litz-wirebundles. The results of the computed resistance and inductance agree well withthe reference fine model with highly reduced computational cost.Furthermore, the synthesis of an RL Cauer ladder network to homogenize themulti-turn winding in time-domain FE computations is examined. Two RLCauer networks are synthesized to match the frequency-dependent compleximpedance and reluctivity, with the accuracy depending on the order of thenetwork to be appended. The proposed method yields an improved accuracy ascompared to the previous study in which the topology of the ladder networkwas not well chosen. The results are validated by means of a 2-D axisymmetricinductor with a gapped nonlinear magnetic core.The last part of the thesis deals with the winding-loss measurement through theextraction of the winding resistance. In general, the resistance value obtainedfrom impedance measurements needs a compensation of undesirable effects, e.g.the core loss and the distributed winding capacitance. Herein, it is rigorouslyshown that the core loss (or core-loss resistance) measured with the two-windingmethod always includes the effect of the winding mutual resistance. At highfrequencies, this effect becomes more prominent and can cause an overestimationof the measured core-loss resistance. As a result, the compensated windingresistances can be significantly underestimated. To mitigate this effect, thecore-loss resistance should be measured on an auxiliary 1:1 transformer withsingle-turn windings. Subsequently, it is scaled to obtain the actual core loss.The proposed analysis and method are applicable to multi-winding components.For validation, we consider a gapped transformer with litz-wire winding forhigh-frequency operation. The experimental results are validated against theresults from the 3-D FE model. The litz-wire winding is considered in theFE model by means of a homogenization approach (third part of this thesis).With the proposed measurement method, the experimentally extracted windingresistances are more accurate and in good agreement with the FE results.
La demande de filtres hautement performants pour les convertisseurs depuissance avec à la fois une atténuation élevée et une large bande passantea fortement augmenté. En effet, ces filtres doivent répondre aux besoinsde large bande passante et faible déformation de sortie pour de nombreusesapplications émergentes, telles les sources d’alimentation contrôlables et lesconvertisseurs reliés au réseau. Par ailleurs, à une fréquence de commutationélevée, l’atténuation du filtre doit être conforme aux normes pour les interférencesélectromagnétiques (IEM), qui sont plus strictes que celles relatives à ladéformation harmonique dans le réseau. Il est extrêmement difficile de concevoirun filtre de sortie pour assurer à la fois une atténuation élevée et une largebande passante. La recherche doit donc viser la conception de nouveaux outilset de nouvelles approches de modélisation.Cette thèse porte sur les différents aspects de la conception, de la modélisationet de la validation des filtres de sortie, à savoir la conception d’un régulateurd’amortissement résonnant et les valeurs de composants, la modélisation et lamesure des pertes dans les enroulements. La thèse contribue à améliorer et àfaciliter ces aspects en introduisant une méthode originale de co-conception pardimensionnement et contrôle de composants, une méthode d’homogénéisationbasée sur les éléments finis pour le calcul des pertes dans les enroulements etune méthode plus précise d’extraction de la résistance des enroulements.La première partie de la thèse présente une méthode de commande de circuitvirtuel (CCV) permettant de concevoir un régulateur à temps discret et àamortissement résonant pour les convertisseurs de source de tension liés auréseau avec des filtres de sortie. La méthode fournit un moyen intuitif despécifier le comportement souhaité en boucle fermée au moyen d’un circuit deréférence virtuel plutôt qu’au moyen de critères mathématiques abstraits telsque des pôles en boucle fermée et des matrices de pondération. Par conséquent,il est possible d’exploiter les designs existants de filtres passives, qui ne peuventpas être mises en oeuvre en pratique en raison de pertes excessives, et la théorie bien établie des filtres. Le courant de réseau et la tension de condensateur en mode commun, qui sont les objectifs principaux de la commande, héritentdes propriétés principales de leurs circuits virtuels de référence, par exemple,l’amortissement de la résonance et le comportement à basse fréquence. Enconséquence, les régulateurs de tension/courant peuvent être conçus facilementsur base du comportement à basse fréquence des circuits virtuels. La méthodepeut également être directement équipée de régulateurs conventionnels pouraméliorer la performance du système, tel que la compensation harmonique.Pour la validation, des simulations et tests expérimentaux sont effectués pourcommander un convertisseur à source de tension (VSC) en réseau triphasé avecun filtre LCL. Les résultats confirment l’efficacité de l’amortissement de larésonance et des performances dynamiques.Par la suite, la méthode CCV est utilisée pour établir une nouvelle méthodede co-conception de dimensionnement de composants et de commande pourles filtres de sortie LC en échelle à amortissement actif d’ordre général. Cetteméthode exécute la méthode CCV en sens inverse. Le circuit virtuel est d’abordconçu sur base d’un réseau en échelle à terminaison simple. A partir d’unefonction de transfert en boucle fermée, le circuit virtuel est synthétisé pourrépondre aux exigences physiques. Le circuit physique est ensuite réalisé enadoptant les mêmes composants que ceux du circuit virtuel. Par conséquent, ilaborde simultanément la conception des paramètres de filtre et la commanded’amortissement résonant. L’exemple de conception de filtres LCL pour unVSC en réseau triphasé est démontré et testé expérimentalement. La largeurde la bande mesurée de la fonction de transfert de référence du courant desortie est en accord avec le modèle théorique. En régime permanent, le courantde sortie présente une excellente forme d’onde sinusoïdale, comme souhaité.En outre, nous avons utilisé une optimisation multi-objective de type Paretopour concevoir un filtre LCLCL d’ordre 5. Le résultat a été comparé avec unfiltre LCL d’ordre 3, et cela en terme de réduction de volume. La réductionde volume obtenue est prometteuse pour les applications nécessitant une largebande passante et/ou une atténuation élevée.La troisième partie de la thèse étudie une méthode d’homogénéisation paréléments finis (EF) dans le domaine fréquentiel pour les bobinages de fils deLitz. L’approche consiste à adopter une réluctivité complexe dépendante dela fréquence dans les bobinages de fils de Litz et une impédance complexedépendante de la fréquence dans le circuit électrique en termes de coefficientsadimensionnels. Ils représentent respectivement les effets de peau et de proximité.Les bobinages de fils de Litz deviennent des conducteurs homogènes simples àintégrer dans un modèle d’éléments finis. La méthode d’homogénéisation estvalidée par un modèle 2-D de transformateur et un modèle 3-D d’inductanceaxisymétriqu dont les solutions de référence sont calculées à partir de bobinages de fils de Litz finement discrétisés. Les résultats de la résistance et de l’inductance calculées ainsi concordent bien avec le modèle de référence avec uncoût computationnel fortement réduit.En outre, la synthèse d’un réseau RL Cauer en échelle pour homogénéiserl’enroulement multi-spires dans les calculs EF dans le domaine temporel estanalysée. Deux réseaux RL Cauer sont synthétisés pour faire correspondrel’impédance et la réluctivité complexes dépendant de la fréquence ; la précisionest fonction de l’ordre du réseau. L’approche proposée offre une précisionmeilleure que celle de l’étude précédente dans laquelle la topologie du circuiten échelle n’était pas bien choisie. Les résultats sont validés à l’aide d’uneinductance axisymétrique 2-D à noyau magnétique non linéaire à entrefer.La dernière partie de la thèse porte sur la mesure des pertes dans lesenroulements par extraction de leur résistance. En général, la valeur derésistance obtenue à partir des mesures d’impédance nécessite une compensationdes effets indésirables, p. ex. les pertes dans le noyau magnétique et lacapacité d’enroulement distribuée. Nous montrons rigoureusement que lespertes du noyau (ou la résistance due aux pertes du noyau) mesurées avec laméthode à deux enroulements inclut toujours l’effet de la résistance mutuelle desenroulements. Aux hautes fréquences, cet effet devient plus important et peutprovoquer une surestimation de la résistance du noyau mesurée. En conséquence,les résistances compensées des enroulements peuvent être considérablementsous-estimées. Pour atténuer cet effet, la résistance du noyau doit êtremesurée à l’aide d’un transformateur auxiliaire 1:1 avec des enroulementsà une spire. Ensuite, elle est mise à l’échelle en accord avec les pertes réelles dunoyau. L’analyse et la méthode proposées sont applicables aux composants àenroulements multiples. Pour la validation, nous considérons un transformateurà entrefer et des enroulements de fil de Litz pour le fonctionnement à hautefréquence. Les résultats expérimentaux sont validés au moyen des résultats dumodèle EF 3-D, dans lequel l’enroulement avec fil de Litz est pris en compte parune approche d’homogénéisation (troisième partie de la thèse). Avec la méthodede mesure proposée dans cette thèse, les résistances de bobinage extraitesexpérimentalement sont plus précises et en bon accord avec les résultats EF.