par Simonini, Alessia ;Peveroni, Laura;Vetrano, Maria Rosaria
Référence Aerospace science and technology, 90, page (452-462)
Publication Publié, 2019-07-01
Article révisé par les pairs
Résumé : Cryogenic sloshing is of primary importance in aerospace propulsion since it can affect the dynamic stability and the propellant management during each phase of spacecraft missions. We show in this work, for the first time, that cryogenic sloshing can be investigated by means of tracer-based laser techniques, such as Particle Image Velocimetry (PIV), to obtain the liquid/gas interface and the bulk velocity both in the unsteady and steady regime. The fluid heating due to the laser interaction with the tracer particles and the possible effect on the particle-fluid slip velocity is evaluated. An experimental campaign is conducted, and both the liquid/gas interface position and the velocity maps of the bulk are obtained in time-resolved conditions. Finally, the logarithmic damping at the liquid/gas interface and in the bulk are evaluated and compared with satisfactory results to the models available in the literature.