par Boscaggin, Alberto;Colasuonno, Francesca
;Noris, Benedetta
Référence ESAIM. COCV, 24, 4, page (1625-1644)
Publication Publié, 2018-10
;Noris, BenedettaRéférence ESAIM. COCV, 24, 4, page (1625-1644)
Publication Publié, 2018-10
Article révisé par les pairs
| Résumé : | For 1 < p < ∞, we consider the following problem - Δ p u = f(u), u > 0 in Ω, ∂ ν u = 0 on ∂Ω, where Ω ⊂ ℝ N is either a ball or an annulus. The nonlinearity f is possibly supercritical in the sense of Sobolev embeddings; in particular our assumptions allow to include the prototype nonlinearity f(s) = -s p-1 + s q-1 for every q > p. We use the shooting method to get existence and multiplicity of non-constant radial solutions. With the same technique, we also detect the oscillatory behavior of the solutions around the constant solution u ≡ 1. In particular, we prove a conjecture proposed in [D. Bonheure, B. Noris and T. Weth, Ann. Inst. Henri Poincaré Anal. Non Linéaire 29 (2012) 573-588], that is to say, if p = 2 and f′ (1) > λ rad k + 1 , with λ rad k + 1 the (k + 1)-th radial eigenvalue of the Neumann Laplacian, there exists a radial solution of the problem having exactly k intersections with u ≡ 1, for a large class of nonlinearities. |



