Article révisé par les pairs
Résumé : Objectives: To determine the variabilities of dose-area-products (DAP) of frequent X-ray examinations collected for comparison with diagnostic reference levels (DRLs). Methods: DAP values of chest, abdomen, and lumbar spine examinations obtained on devices from two manufacturers were collected in three centers over 1 to 2 years. The variability of the average DAP results defined as the 95% confidence interval in percentage of their median value was calculated for increasing sample sizes, each examination and center. We computed the sample sizes yielding variabilities lower or equal to 25% and 10%. The effect of narrowing patient selection based on body weight was also investigated (ranges of 67–73 Kg, or 60–80 Kg). Results: DAP variabilities ranged from 75 to 170% of the median value when collecting small samples (10 to 20 DAP). To reduce this variability, larger samples are needed, collected over up to 2 years, regardless of the examination and center. A variability ≤ 10% could only be reached for chest X-rays, requiring up to 800 data. For the abdomen and lumbar spine, the lowest achievable variability was 25%, regardless of the body weight selection, requiring up to 400 data. Conclusion: Variabilities in DAP collected through small samples of ten data as recommended by authorities are very high, but can be reduced down to 25% (abdomen and lumbar spine) or even 10% (chest) through a substantial increase in sample sizes. Our findings could assist radiologists and regulatory authorities in estimating the reliability of the data obtained when performing X-ray dose surveys. Key Points: • Low but reasonable variabilities cannot be reached with samples sized as recommended by regulatory authorities. Higher numbers of DAP values are required to reduce the variability. • Variabilities of 10% for the chest and 25% for abdomen and lumbar spine examinations are achievable, provided large samples of data are collected over 1 year. • Our results could help radiologists and authorities interpret X-rays dose surveys.