Article révisé par les pairs
Résumé : We consider the response to periodic forcing between 5 Hz and 50 Hz of an interface separating immiscible fluids under the microgravity conditions of a parabolic flight. Two pairs of liquids with viscosity ratios differing by one order of magnitude are investigated. By combining experimental data with numerical simulations, we describe a variety of dynamics including harmonic and subharmonic (Faraday) waves, frozen waves and drop ejection, determining their thresholds and scaling properties when possible. Interaction between these various modes is facilitated in microgravity by the relative ease with which the interface can move, altering its orientation with respect to the forcing axis. The effects of key factors controlling pattern selection are analysed, including vibrational forcing, viscosity ratio, finite-size effects and residual gravity. Complex behaviour often arises with features on several spatial scales, such as Faraday waves excited on the interface of a larger columnar structure that develops due to the frozen wave instability - this type of state was previously seen in miscible fluid experiments but is described for the first time here in the immiscible case.