Résumé : Les premières années d’opération du LHC à 7 et 8 TeV ont permis de tester de nombreux aspects du modèle standard (MS) de la physique des particules avec comme point d’orgue la découverte d’un boson scalaire compatible avec celui du MS. Cependant, malgré son succès, le MS n’explique pas tout. De nombreux modèles essayent donc de combler les manques du MS et certains requièrent un secteur scalaire étendu. Cette thèse étudie ce secteur scalaire et présente en particulier la recherche d’un nouveau boson scalaire massif en utilisant les 35,9 fb-1 de données récoltées au LHC à 13 TeV en 2016. Cette recherche se concentre sur le processus H→ZZ→2l2ν où l est un electron ou un muon, et ν un neutrino. Une analyse statistique des distributions de masse transverse du boson (Z→l^+ l^-) reconstruit et de l’énergie transverse manquante est réalisée en catégories de jets et de saveurs de lepton après une sélection des événements dans le but de faire sortir un signal potentiel par rapport aux bruits de fond. Divers scenarios de masse, largeur et de mode de productions sont testés pour un boson scalaire H et aucun excès significatif n’est observé dans les données pour une gamme de masses allant de 300 GeV à 3 TeV. Des limites supérieures à 95% de niveau de confiance sur la section efficace σ(pp→H→ZZ) sont établies. Ces résultats sont combinés avec deux autres canaux étudiés par la collaboration CMS : H→ZZ→4l et H→ZZ→2l2q, où q représente un quark. Cette combinaison est publiée (CMS Collaboration, « Search for a new scalar resonance decaying to a pair of Zbosons in proton-proton collisions at √s=13 TeV », JHEP, vol. 06, pp. 127,2018) et aucun excès significatif n’est observé dans les données pour des masses entre 130 GeV et 3 TeV. Un bruit de fond majeur pour cette analyse est le bruit de fond instrumental Z+jets. Son estimation est faite non pas par simulation mais en utilisant les données récoltées par CMS. Un chapitre entier est dédié à l’étude de ce bruit de fond et les incertitudes sur celui-ci sont estimées en détails pour la première fois. En particulier les sources d’incertitudes sont divisées en celles d’origine statistique, systématique et celles inhérentes à la méthode d’estimation de ce bruit de fond. Elles sont respectivement de l’ordre de 50%, 50% et 10%.
The first years of operation of the LHC at 7 and 8TeV (run 1) allowed to probemany aspects of the Standard Model (SM) of particle physics, confirming many predictions up to a high level of precision. An awaited event was the discovery of a scalar boson compatible with the SM in 2012. However, despite its success, the SM cannot explain everything on its own. Models going beyond the SM try to address such issues, and in particular classes of BSM theories require an extended scalar sector.The scope of this thesis falls within the direct search for heavy BSM scalar boson(H) using 35,9 fb-1 of data taken at LHC at 13TeV during 2016 operations. Inparticular, the thesis focuses on H→ZZ→2l2ν where l is an electron or a muon, and ν a neutrino.A statistical analysis of the transversemass distributions of the reconstructed Z boson and the missing transverse energy isperformed in categories of jet and lepton flavour after selecting events in order to enhancethe number of potential signal events in comparison to background events. Variousscenarii of masses, widths and production mechanisms (gluon fusion and vector boson fusion) are tested and no excess is observed in data compared to backgroundestimations for a scalar mass between 300 GeV and 3TeV. Upper exclusion limits onthe cross section of a potential signal are set using the CLs method.The results of this analysis are combined with two other channels studied by theCMS collaboration: H→ZZ→4l and H→ZZ→2l2q, where q is a quark.This combinationhas been published (CMS Collaboration, « Search for a new scalar resonance decaying to a pair of Zbosons in proton-proton collisions at √s=13 TeV », JHEP, vol. 06, pp. 127,2018) and no significanthint for BSM physics is observed for a scalar mass between 130 GeV and 3TeV.A critical background to control for this analysis is the Z+jet background. Its estimation is done using a data-driven method.A full chapter is dedicated to the study of this background. The present thesis is the first time that the uncertainties on the data-driven estimationof the Z+jet background are estimated in detail. Uncertainties are dividedinto statistical uncertainties, systematic uncertainties and uncertainties inherent to themethod, the latter being computed from a closure test of the method and evaluated to10%. The relative statistical and systematic uncertainties are both of the order of 50%.