Résumé : We present a strategy based on two-dimensional arrays of coupled linear optical resonators to investigate the two-body physics of interacting bosons in one-dimensional lattices. In particular, we want to address the bound pairs in topologically nontrivial Su-Schrieffer-Heeger arrays. Taking advantage of the driven-dissipative nature of the resonators, we propose spectroscopic protocols to detect and tomographically characterize bulk doublon bands and doublon edge states from the spatially resolved transmission spectra, and to highlight Feshbach resonance effects in two-body collision processes. We discuss the experimental feasibility using state-of-the-art devices, with a specific eye on arrays of semiconductor micropillar cavities.