Résumé : Transient nociceptive stimuli elicit robust phase-locked local field potentials (LFPs) in the human insula. However, these responses are not preferential for nociception, as they are also elicited by transient non-nociceptive vibrotactile, auditory, and visual stimuli. Here, we investigated whether another feature of insular activity, namely gamma-band oscillations (GBOs), is preferentially observed in response to nociceptive stimuli. Although nociception-evoked GBOs have never been explored in the insula, previous scalp electroencephalography and magnetoencephalography studies suggest that nociceptive stimuli elicit GBOs in other areas such as the primary somatosensory and prefrontal cortices, and that this activity could be closely related to pain perception. Furthermore, tracing studies showed that the insula is a primary target of spinothalamic input. Using depth electrodes implanted in 9 patients investigated for epilepsy, we acquired insular responses to brief thermonociceptive stimuli and similarly arousing non-nociceptive vibrotactile, auditory, and visual stimuli (59 insular sites). As compared with non-nociceptive stimuli, nociceptive stimuli elicited a markedly stronger enhancement of GBOs (150-300 ms poststimulus) at all insular sites, suggesting that this feature of insular activity is preferential for thermonociception. Although this activity was also present in temporal and frontal regions, its magnitude was significantly greater in the insula as compared with these other regions.