par Shoaib, Muhammad;Walter, David;Gillespie, Peter P.J.;Izard, Fanny;Fahrenkrog, Birthe
;Llères, David;Lerdrup, Mads;Johansen, Jens Vilstrup;Hansen, Klaus;Julien, Eric;Blow, Julian J.J.;Sørensen, Claus Storgaard
Référence Nature communications, 9, 1, 3704
Publication Publié, 2018-12
;Llères, David;Lerdrup, Mads;Johansen, Jens Vilstrup;Hansen, Klaus;Julien, Eric;Blow, Julian J.J.;Sørensen, Claus StorgaardRéférence Nature communications, 9, 1, 3704
Publication Publié, 2018-12
Article révisé par les pairs
| Résumé : | The decompaction and re-establishment of chromatin organization immediately after mitosis is essential for genome regulation. Mechanisms underlying chromatin structure control in daughter cells are not fully understood. Here we show that a chromatin compaction threshold in cells exiting mitosis ensures genome integrity by limiting replication licensing in G1 phase. Upon mitotic exit, chromatin relaxation is controlled by SET8-dependent methylation of histone H4 on lysine 20. In the absence of either SET8 or H4K20 residue, substantial genome-wide chromatin decompaction occurs allowing excessive loading of the origin recognition complex (ORC) in the daughter cells. ORC overloading stimulates aberrant recruitment of the MCM2-7 complex that promotes single-stranded DNA formation and DNA damage. Restoring chromatin compaction restrains excess replication licensing and loss of genome integrity. Our findings identify a cell cycle-specific mechanism whereby fine-tuned chromatin relaxation suppresses excessive detrimental replication licensing and maintains genome integrity at the cellular transition from mitosis to G1 phase. |



