Thèse de doctorat
Résumé : This thesis investigates various active control aspects of large aperture telescopes; both Earth-based and space telescopes are considered.The first part proposes a concept of piezoelectric adaptive thin shell reflector for future space telescopes; it exhibits excellent areal density and stowability, and thus, paves the way to future large aperture space telescopes. Controlling the surface figure of spherical or parabolic shell with in-plane stresses induced by a piezoelectric layer raises two problems: (i) Doubly curved shells are significantly stiffer than flat plates (especially for the optical modes associated with hoop strains) and (ii) When using segmented electrodes with different voltages, the surface figure is subject to edge fluctuations with a characteristic length depending on the reflector curvature R_c and thickness t according to sqrt(R_ct). Accurate surface figure corrections require that the electrode size D_e satisfies D_e-3), it may generate significant wavefront errors in the primary mirror M1, in a frequency range (30-100Hz) which may be difficult to eliminate by Adaptive Optics.