par Shavandi, Amin ;Bekhit, Alaa El-Din;Ali, Azam;Sun, Zhifa
Référence International journal of biological macromolecules, 80, page (445-454)
Publication Publié, 2015-09
Article révisé par les pairs
Résumé : In the present study, chitosan/hydroxyapatite (HA)/β-tircalcium phosphate (β-TCP) composites were produced using squid pen derived chitosan (CHS) and commercial crab derived chitosan (CHC). CHS was prepared from squid pens by alkaline N-deacetylation. HA and β-TCP were extracted from mussel shells using a microwave irradiation method. Two different composites were prepared by incorporating 50% (w/w) HA/(β-TCP) in CHS or CHC followed by lyophilization and cross-linking of composites by tripolyphosphate (TPP). The effect of different freezing temperatures of -20, -80 and -196 °C on the physicochemical characteristics of composites was investigated. A simulated body fluid (SBF) solution was used for preliminary in vitro study for 1, 7, 14 and 28 days and the composites were characterized by XRD, FTIR, TGA, SEM, μ-CT and ICP-MS. Porosity, pore size, water uptake; water retention abilities and in vitro degradations of the prepared composites were evaluated. The CHS composites were found to have higher porosity (62%) compared to the CHC composites (porosity 42%) and better mechanical properties. The results of this study indicated that composites produced at -20 °C had higher mechanical properties and lower degradation rate compared with -80 °C. Chitosan from the squid pen is an excellent biomaterial candidate for bone tissue engineering applications.