Article révisé par les pairs
Résumé : Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we extend our large-scale calculations of the E1 and M1 absorption γ-ray strength function obtained in the framework of the axially-symmetric deformed quasiparticle random phase approximation (QRPA) based on the finite-range D1M Gogny force to the determination of the de-excitation strength function. To do so, shell-model calculations of the de-excitation dipole strength function as well as experimental data are considered to provide insight in the low-energy limit and to complement the QRPA estimate phenomenologically. We compare our final prediction of the E1 and M1 strengths with available experimental data at low energies and show that a relatively good agreement can be obtained. Its impact on the average radiative width as well as radiative neutron capture cross section is discussed.