Résumé : The Sahara silver ant Cataglyphis bombycina is one of the world’s most thermotolerant animals. Workers forage for heat-stricken arthropods during the hottest part of the day, when temperatures exceed 50 °C. However, the physiological adaptations needed to cope with such harsh conditions remain poorly studied in this desert species. Using transcriptomics, we screened for the most heat-responsive transcripts of C. bombycina with aim to better characterize the molecular mechanisms involved with macromolecular stability and cell survival to heat-stress. We identified 67 strongly and consistently expressed transcripts, and we show evidences of both evolutionary selection and specific heat-induction of mitochondrial-related molecular chaperones that have not been documented in Formicidae so far. This indicates clear focus of the silver ant’s heat-shock response in preserving mitochondrial integrity and energy production. The joined induction of small heat-shock proteins likely depicts the higher requirement of this insect for proper motor function in response to extreme burst of heat-stresses. We discuss how those physiological adaptations may effectively help workers resist and survive the scorching heat and burning ground of the midday Sahara Desert.