Thèse de doctorat
Résumé : The device-independent (DI) framework is a novel approach to quantum information science which exploits the nonlocality of quantum physics to certify the correct functioning of a quantum information processing task without relying on any assumption on the inner workings of the devices performing the task. This thesis focuses on the device-independent certification and generation of true randomness for cryptographic applications. The existence of such true randomness relies on a fundamental relation between the random character of quantum theory and its nonlocality, which arises in the context of Bell tests. Device-independent randomness generation (DIRG) and quantum key distribution (DIQKD) protocols usually evaluate the produced randomness (as measured by the conditional min-entropy) as a function of the violation of a given Bell inequality. However, the probabilities characterising the measurement outcomes of a Bell test are richer than the degree of violation of a single Bell inequality. In this work we show that a more accurate assessment of the randomness present in nonlocal correlations can be obtained if the value of several Bell expressions is simultaneously taken into account, or if the full set of probabilities characterising the behaviour of the device is considered. As a side result, we show that to every behaviour there corresponds an optimal Bell expression allowing to certify the maximal amount of DI randomness present in the correlations. Based on these results, we introduce a family of protocols for DIRG secure against classical side information that relies on the estimation of an arbitrary number of Bell expressions, or even directly on the experimental frequencies of the measurement outcomes. The family of protocols we propose also allows for the evaluation of randomness from a subset of measurement settings, which can be advantageous when considering correlations for which some measurement settings result in more randomness than others. We provide numerical examples illustrating the advantage of this method for finite data, and show that asymptotically it results in an optimal generation of randomness from experimental data without having to assume beforehand that the devices violate a specific Bell inequality.
L'approche indépendante des appareils ("device-independent" en anglais) est une nouvelle approche en informatique quantique. Cette nouvelle approche exploite la non-localité de la physique quantique afin de certifier le bon fonctionnement d'une tâche sans faire appel à des suppositions sur les appareils menant à bien cette tâche. Cette thèse traite de la certification et la génération d'aléa indépendante des appareils pour des applications cryptographiques. L'existence de cet aléa repose sur une relation fondamentale entre le caractère aléatoire de la théorie quantique et sa non-localité, mise en lumière dans le cadre des tests de Bell. Les protocoles de génération d'aléa et de distribution quantique de clés indépendants des appareils mesurent en général l'aléa produit en fonction de la violation d'une inégalité de Bell donnée. Cependant les probabilités qui caracterisent les résultats de mesures dans un test de Bell sont plus riches que le degré de violation d'une seule inégalité de Bell. Dans ce travail nous montrons qu'une évaluation plus exacte de l'aléa présent dans les corrélations nonlocales peut être faite si l'on tient compte de plusieurs expressions de Bell à la fois ou de l'ensemble des probabilités (ou comportement) caractérisant l'appareil testé. De plus nous montrons qu'à chaque comportement correspond une expression de Bell optimale permettant de certifier la quantité maximale d'aléa présente dans ces corrélations. À partir de ces resultats, nous introduisons une famille de protocoles de génération d'aléa indépendants des appareils, sécurisés contre des adversaires classiques, et reposant sur l'évaluation de l'aléa à partir d'un nombre arbitraire d'expressions de Bell, ou même à partir des fréquences expérimentales des résultats de mesure. Les protocoles proposés permettent aussi d'évaluer l'aléa à partir d'un sous-ensemble de choix de mesure, ce qui peut être avantageux lorsque l'on considère des corrélations pour lesquelles certains choix de mesure produisent plus d'aléa que d'autres. Nous fournissons des exemples numériques illustrant l'avantage de cette méthode pour des données finies et montrons qu'asymptotiquement cette méthode résulte en un taux de génération d'aléa optimal à partir des données expérimentales, sans devoir supposer à priori que l'expérience viole une inégalité de Bell spécifique.