Résumé : Le dogme central de la biologie repose sur la production de protéines à partir de notre ADN. L’ADN est d’abord transcrit en ARN et celui-ci est ensuite traduit en protéine. C’est donc en cette dernière qu’est localisé le “pouvoir exécutif” de la cellule, ce qui explique le fait que les protéines soient devenues le centre d’attention de la recherche. L’ARN, quant à lui, est donc depuis longtemps considéré comme une molécule intermédiaire, dont l’unique raison d’être est le transfert d’information entre l’ADN et les protéines. Pourtant, ces dernières années, les avancées technologiques ont révélé qu’une majeure partie de notre génome, notre ADN, est transcrit en ARNs dits « noncodants » ne donnant pas lieu à une protéine. Ceux-ci sont impliqués dans de nombreux processus cellulaires et de ce fait participent aux pathologies. D’autre part, de nouvelles technologies ont aussi mené à l’observation que le métabolisme des ARNs, codants ou non, est la cible de nouveaux mécanismes de régulation: les modifications chimiques des ribonucléosides. Analysées de manière conjointe, ces découvertes poussent à la révision du rôle des ARNs au sein des processus cellulaires. Dès lors, dans le cadre de cette thèse nous avons voulu mieux comprendre la fonction et la régulation des molécules d’ARN afin d’en révéler le rôle plus central qu’ils jouent dans les processus cellulaire et en particulier, la cancérogenèse. Pour ce faire cette thèse comporte deux parties, la première décrit comment certains ARNs, dit “longs ARNs non-codants” participent au développement et à l’hétérogénéité du cancer colorectal. En effet ces ARNs exercent des fonctions “exécutives” sans être la source d’une protéine. Nous avons identifié 282 long ARNs non-codants dont les profils d’expression reflètent les différentes caractéristiques rencontrées au travers des différents sous-types de tumeurs colorectales. De plus, nos analyses informatiques ont indiqué que ces ARNs font partie intégrante des réseaux de signalisations les plus importants et les plus souvent dérégulés dans les différents sous-types que présente ce cancer. Enfin, et ce via des expériences in vitro nous soutenons la validité de nos analyses informatiques en confirmant le rôle de lncBLID-5, un long ARN non-codant, dans la régulation du cycle cellulaire et de la transition épithéliale vers mésenchymale un processus cellulaire très important dans les cancers colorectaux. Dans la deuxième partie nous avons étudié la méthylation des cytosines de l’ARN, une modification très récemment identifiée. Nous avons découvert que la protéine SRSF2, un facteur général de l’épissage des ARNs, est capable de se lier aux cytosines méthylées et ce plus fortement qu’aux cytosines non-méthylées. Enfin, nous montrons que la mutation P95H de SRSF2, très fréquente chez les patients atteints de leucémie, empêche SRSF2 de favoriser sa liaison aux cytosines méthylées laissant entrevoir de nouvelles explications à l’épissage défectueux conduisant à ce type de cancer. En conclusion nos travaux apportent de nouvelles informations quant à l’implication et la régulation des ARNs codants et non-codants dans le cadre du cancer. Ces résultats devraient nous mener à revoir le rôle qu’occupe l’ARN au sein des processus cellulaires sains ainsi que pathologiques, ouvrant la porte sur une nouvelle dimension de cibles diagnostiques et thérapeutiques.