Résumé : The importance of human impacts on Earth has led to the proposal of a new geologic epoch called the Anthropocene. However markers, recognizable in all records, are required to define this period. Here we combine elemental geochemistry with stable lead (Pb) isotopes and mineralogical analyses to decipher the sources of lead in two exploited ombrotrophic peat bogs (Puścizna Mała and Puścizna Krauszowska) from Southern Poland. The most disturbed parts of the cores, distinguished using bulk density and age–depth models (22–45 cm in PM and 22–46 cm in PK), were excluded from the interpretation. The two studied cores record ca. 2000 years of variations in lead accumulation rates and isotopic compositions. In the lowest part of the cores (2nd to 4th century AD for Puścizna Mała and 2nd century BC to 2nd century AD for Puścizna Krauszowska), the 206Pb/207Pb ratios (1.188) are consistent with natural supplies from the erosion of the nearby Tatra Mountains. From the 9th to the 19th century AD, 206Pb/207Pb ratios (1.176–1.179) are similar to the signatures obtained from Polish galena ores. The highest Pb accumulation rates are found around 1950 AD and reflect the primary influence of bituminous coal combustion together with the secondary influence of leaded gasoline. This result agrees with the occurrence and abundance of spheroidal aluminosilicates, an unambiguous marker of human industrial activity and coal burning as well as with the acceleration of Zn, Cd and Fe accumulation rate. Our results provide evidence that similar geochemical patterns exist in both analysed cores despite differences in the history of peatland exploitation. Therefore, given that extra care is taken to identify the disturbed peat layers, exploited peatlands can be used to record past changes in lead isotopic signature during the Anthropocene.