Résumé : Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are multipotent progenitor cells that have shown promise for several different therapeutic applications. As they are able to modulate the function of several types of immune cells, BM-MSCs are highly important in the field of cell-based immunotherapy. Understanding BM-MSC-natural killer (NK) cell interactions is crucial for improving their therapeutic efficiency. Here, we observed that the type of NK cell-activating cytokine (e.g., IL-2, IL-12, IL-15 and IL-21) strongly influenced the outcomes of their interactions with BM-MSCs. The expression patterns of the ligands (CD112, CD155, ULPB-3) and receptors (LAIR, NCR) mediating the cross-talk between BM-MSCs and NK cells were critically modulated following co-culture. BM-MSCs partially impaired NK cell proliferation but up-regulated their secretion of IFN-γ and TNF-α. As they are cytotoxic, activated NK cells induced the killing of BM-MSCs. Indeed, BM-MSCs triggered the degranulation of NK cells and increased their release of perforin and granzymes. Interestingly, activated NK cells induced ROS generation within BM-MSCs that caused their decreased viability and reduced expression of serpin B9. Collectively, our observations reveal that BM-MSC-NK cell interactions may impact the immunobiology of both cell types. The therapeutic potential of BM-MSCs will be significantly improved once these issues are well characterized.