Résumé : Phase change materials (PCMs) are substances exhibiting phase transitions with large latent heats that can be used as thermal storage materials with a large energy storage capacity in a relatively narrow temperature range. In many practical applications the solid-liquid phase change is used. For applications accurate knowledge of different thermal parameters has to be available. In particular, the temperature dependence of the enthalpy around the phase transition has to be known with good accuracy. Usually, the phase transitions of PCMs are investigated with differential scanning calorimetry (DSC) at fast dynamic scanning rates resulting in the effective heat capacity from which the (total) heat of transition can be determined. Here we present adiabatic scanning calorimetry (ASC) as an alternative approach to arrive simultaneously at the equilibrium enthalpy curve and at the heat capacity. The applicability of ASC is illustrated with measurements on paraffin-based PCMs and on a salt hydrate PCM.