Résumé : Alzheimer's disease is the most common form of dementia that affects about 50 million of sufferers worldwide. A major role for the initiation and progression of Alzheimer's disease has been associated with the amyloid β-peptide (Aβ), which is a protease cleavage product of the amyloid precursor protein. The amyloid precursor protein is an integral membrane protein with a single transmembrane domain. Here, we assessed the structural integrity of the transmembrane domain within oriented phosphatidylcholine lipid bilayers and determined the tilt angle distribution and dynamics of various subdomains using solid-state NMR and attenuated total reflectance Fourier transform infrared spectroscopies. Although the overall secondary structure of the transmembrane domain is α-helical, pronounced conformational and topological heterogeneities were observed for the γ- and, to a lesser extent, the ζ-cleavage site, with pronounced implications for the production of Aβ and related peptides, the development of the disease, and pharmaceutical innovation.