Résumé : Converging evidence points at hypothalamus-pituitary-adrenal (HPA) axis hyperactivity and neuroinflammation as important factors involved in the etiopathogenesis of major depressive disorder (MDD) and in therapeutic efficacy of antidepressants. In this study, we examined the molecular effects associated with a response to a week-long treatment with escitalopram in the chronic escape deficit (CED) model, a validated model of depression based on the induction of an escape deficit after exposure of rats to an unavoidable stress. We confirmed our previous result that a treatment with escitalopram (10 mg/kg) was effective after 7 days in reverting the stress-induced escape deficit in approximately 50% of the animals, separating responders from non-responders. Expression of markers of HPA axis functionality as well as several inflammatory mediators were evaluated in the hypothalamus, a key structure integrating signals from the neuro, immune, endocrine systems. In the hypothalamus of responder animals we observed a decrease in the expression of CRH and its receptors and an increase in GR protein in total and nuclear extracts; this effect was accompanied by a significant decrease in circulating corticosterone in the same cohort. Hypothalamic IL-1β and TNFα expression were increased in stressed animals, while CXCL2, IL-6, and ADAM17 mRNA levels were decreased in escitalopram treated rats regardless of the treatment response. These data suggest that efficacy of a one week treatment with escitalopram may be partially mediated by a decrease HPA axis activity, while in the hypothalamus the drug-induced effects on the expression of immune modulators did not correlate with the behavioural outcome.