Thèse de doctorat
Résumé : Passive coherent location (PCL) radars employ illuminators of opportunity to detect and track targets. This silent operating mode provides many advantages such as low cost and interception immunity. Many radiation sources have been exploited as illumination sources such as broadcasting and telecommunication transmitters. The classical architecture of the bistatic PCL radars involves two receiving channels: a reference channel and a surveillance channel. The reference channel captures the direct-path signal from the transmitter, and the surveillancesignal collects the possible target echoes. The two major challenges for the PCL radars are the reference signal noise and the surveillance signal static clutter. A noisy reference signal degrades the detection probability by increasing the noise-floor level of the detection filter output. And the static clutter presence in the surveillance signal reduces the detector dynamic range and buries low magnitude echoes.In this thesis, we consider a PCL radar based on the digital video broadcasting-terrestrial (DVB-T) signals, and we propose a set of improved methods to deal with the reference signal noise and the static clutter in the surveillance signal. The DVB-T signals constitute an excellentcandidate as an illumination source for PCL radars; they are characterized by a wide bandwidth and a high radiated power. In addition, they provide the possibility of reconstructing the reference signal to enhance its quality, and they allow a straightforward static clutter suppressionin the frequency domain. This thesis proposes an optimum method for the reference signal reconstruction and an improved method for the static clutter suppression.The optimum reference signal reconstruction minimizes the mean square error between the reconstructed signal and the exact one. And the improved static clutter suppression method exploits the possibility of estimating the propagation channel. These two methods extend thefeasibility of a single receiver PCL radar, where the reference signal is extracted from the direct-path signal present in the surveillance signal.