par Fleig, Philipp;Kleinschmidt, Axel
Référence The Journal of high energy physics, 2012, 6, 125
Publication Publié, 2012
Référence The Journal of high energy physics, 2012, 6, 125
Publication Publié, 2012
Article révisé par les pairs
Résumé : | We consider Eisenstein series appearing as coefficients of curvature corrections in the low-energy expansion of type II string theory four-graviton scattering amplitudes. We define these Eisenstein series over all groups in the En series of string duality groups, and in particular for the infinite-dimensional Kac-Moody groups E9, E10 and E11. We show that, remarkably, the so-called constant term of Kac-Moody-Eisenstein series contains only a finite number of terms for particular choices of a parameter appearing in the definition of the series. This resonates with the idea that the constant term of the Eisenstein series encodes perturbative string corrections in BPS-protected sectors allowing only a finite number of corrections. We underpin our findings with an extensive discussion of physical degeneration limits in D < 3 space-time dimensions. © SISSA 2012. |