par Thomas, Carelle
Président du jury Knaepen, Bernard
Promoteur De Wit, Anne
Publication Non publié, 2017-06-26
Président du jury Knaepen, Bernard
Promoteur De Wit, Anne
Publication Non publié, 2017-06-26
Thèse de doctorat
Résumé : | (EN) Carbon dioxide (CO2) sequestration in deep saline aquifers is one of the technologies considered to reduce the accumulation of this greenhouse gas in the atmosphere. The injection of CO2 into these deep geological formations and its dissolution in salt water lead to a buoyantly unstable stratification of denser CO2-enriched brine on top of less dense brine, which can give rise to buoyancy-driven convective fingering in the fluid. This convective dissolution of CO2 in brine is a favourable process for its sequestration as it accelerates the mixing of CO2 into the aqueous phase and therefore enhances the safety of the storage in the saline aquifer. The influence of chemical reactions between species and CO2 dissolved in the brine and hence of the physico-chemical characteristics of the geological reservoir on the development of this instability is still not completely understood. In this context, our goal is to determine experimentally whether chemical reactions in the aqueous phase can improve the efficiency of CO2 convective dissolution. To do so, we have developed an experimental device consisting of a vertical Hele-Shaw cell in which gaseous CO2 dissolves from above in aqueous solutions containing chemical reactants of various nature and concentration. The convective dynamics occurring within the transparent fluid are visualised with the help of a schlieren technique. First, we show that the presence of a color indicator in the aqueous solution can affect the fingering dynamics and that such indicators should therefore be used with caution in this kind of studies. We then study the stabilising effect of an increase in the salt concentration on CO2 convective dissolution in brine. In the reactive case, we show that the fingering instability develops faster in basic solutions of MOH (where M+ is an alkali metal cation) than in pure water and that convection is enhanced if the reactant concentration is increased. In addition, a change of the counter-ion M+ changes the density profile, not only through solutal effects, but also through differential diffusivity effects, which impacts the development of the convective instability. Finally, we explore the changes in the convective dynamics induced by precipitation reactions due to CO2 dissolution in aqueous solutions of Ca(OH)2 and CaCl2 in variable concentrations. Diverse precipitation and convective patterns develop in the aqueous solution depending on the nature and concentration of the reactant in the aqueous phase. Our results show that the convective dissolution of CO2 can be strengthened by chemical reactions and that this effect depends on the nature of the reactants and their concentrations. We conclude that chemical reactions can be favourable to the CO2 sequestration process and that a detailed analysis of the chemical composition of a potential storage site should be a prerequisite to assess its efficiency in dissolving CO2. |
(FR) La séquestration du dioxyde de carbone (CO2) dans les aquifères salins profonds est l’une des technologies envisagées afin de réduire l’accumulation de ce gaz à effet de serre dans l’atmosphère. L'injection de CO2 dans ces formations géologiques profondes et sa dissolution dans l'eau salée génèrent une stratification de densité instable d’une saumure dense enrichie en CO2 au-dessus d’une saumure moins dense, pouvant donner naissance à une instabilité de digitation de densité dans la phase aqueuse. Cette dissolution convective du CO2 accélère le mélange de CO2 dans le réservoir et donc améliore la sécurité du stockage dans l’aquifère salin. L’influence des réactions chimiques entre les espèces et le CO2 dissous dans l’eau salée et donc des caractéristiques physico-chimiques du réservoir géologique sur le développement de cette instabilité est aujourd’hui encore peu connue. Dans ce cadre, notre objectif est de déterminer expérimentalement si une réaction chimique dans la phase aqueuse peut améliorer l’efficacité de la dissolution convective du CO2. Pour ce faire, nous avons mis au point un dispositif expérimental consistant en une cellule de Hele-Shaw verticale dans laquelle du CO2 gazeux se dissout par le haut dans des solutions aqueuses contenant des réactifs chimiques de nature et concentration variées. La dynamique convective est visualisée dans les solutions aqueuses transparentes à l’aide d’une technique schlieren. Tout d’abord, nous montrons que la présence d’un indicateur coloré dans la solution aqueuse peut affecter la dynamique de digitation et que ces indicateurs doivent être utilisés avec prudence dans ce genre d’études. Nous étudions ensuite l’effet stabilisateur d’une augmentation de la concentration en sel sur la dissolution convective de CO2 dans la saumure. Dans les cas réactifs, nous montrons que l’instabilité de digitation se développe plus vite dans des solutions basiques de MOH (où M+ est un cation de métal alcalin) que dans l’eau pure et que la convection est renforcée si la concentration du réactif est augmentée. De plus, un changement du contre-ion M+ de la base modifie le profil de densité, non seulement par le biais d’effets solutaux, mais aussi par des effets de diffusivité différentielle, ce qui modifie le développement de l’instabilité convective. Enfin, nous explorons les changements de dynamiques convectives induits par des réactions de précipitation dues à la dissolution de CO2 dans des solutions aqueuses de Ca(OH)2 et de CaCl2 de concentrations variables. Divers motifs de précipitation et de convection peuvent être obtenus selon la nature et la concentration du réactif dans la phase aqueuse. Nos résultats montrent que la dissolution convective de CO2 peut être renforcée par des réactions chimiques et que cet effet dépend de la nature des réactifs et de leur concentration. Nous concluons que les réactions chimiques peuvent favoriser le processus de séquestration du CO2 et qu’une analyse détaillée de la composition chimique d’un site potentiel de stockage devrait être un préalable à l’évaluation de son efficacité à stocker le CO2. |