par Prigogine, Ilya ;Courbage, Maurice
Référence Proceedings of the National Academy of Sciences of the United States of America, 80, page (2412-2416)
Publication Publié, 1983
Article révisé par les pairs
Résumé : We continue our previous work on dynamic “intrinsically random” systems for which we can derive dissipative Markov processes through a one-to-one change of representation. For these systems, the unitary group of evolution can be transformed in this way into two distinct Markov processes leading to equilibrium for either t→ + ∞ or t→ - ∞. To lift the degeneracy, we first formulate the second principle as a selection rule that is meaningful in intrinsically random systems. For these systems, this excludes a set of unrealizable states. As a result of this exclusion, permitted initial conditions correspond to a set of states that is not invariant through velocity inversion. In this way, the time-reversal symmetry of dynamics is broken and these systems acquire a new feature we may call “intrinsic irreversibility.” The set of admitted initial conditions can be characterized by an entropy displaying the amount of information necessary for their preparation. The initial conditions selected by the second law correspond to a finite amount of information, while the initial conditions that are rejected correspond to an infinite amount of information and are therefore “impossible.” We believe that our formulation permits a microscopic formulation of the second law of thermodynamics for well-defined classes of dynamical systems.