Résumé : Les sols enrichis en éléments traces métalliques, encore appelés sols métallifères, constituent un modèle original pour l’étude des processus écologiques et évolutifs opérant au sein de la végétation qui y est associée. Au Sud-Est de l’Afrique centrale, dans l’ex-province du Katanga, une succession d’affleurements naturels de roches enrichies en cuivre (Cu) et en cobalt (Co), uniques en leur genre à la surface de la terre, forment le très célèbre « Arc Cuprifère Katangais ». De véritables « collines de cuivre », isolées géographiquement dans une matrice de forêt claire, s’étendent sur plus de 300 Km et constituent des écosystèmes remarquables attirant l’attention de chercheurs depuis plus d’un demi-siècle.Les conditions écologiques extrêmes des collines de Cu et de Co, liées principalement à des concentrations métalliques élevées dans les sols (1 000 à 10 000 fois supérieures aux sols normaux), ont sélectionné des végétations hautement originales et uniques composées de métallophytes, aussi appelées cupro-cobaltophytes, pouvant toutefois présenter des niches écologiques très variables. Certaines de ces plantes possèdent même la fascinante particularité d’accumuler le Cu et/ou le Co dans leurs tissus foliaires à des niveaux de concentrations extrêmement toxiques pour des plantes normales, et sont qualifiées arbitrairement d’hyperaccumulatrices. À ce jour, de fortes variations d’accumulation du Cu et du Co encore mal comprises sont observées chez ces cupro-cobaltophytes. Celles-ci pourraient être expliquées par une variation de la disponibilité du Cu et du Co dans les sols, par une variabilité des mécanismes de tolérance au Cu et au Co, et par une variation de la capacité à accumuler ces métaux.Certaines cupro-cobaltophytes sont restreintes de ces habitats métallifères hors-normes, et d’autres se distribuent plus largement, possédant également des populations au sein d’habitats non-métallifères, en savane ou en forêt, sur sol normal. Ces dernières, à plus large distribution écologique, sont qualifiées de cupro-cobaltophytes facultatives, et constituent des modèles biologiques hautement intéressants pour étudier les processus écologiques et évolutifs liés à la tolérance et l’accumulation du Cu et du Co.La biogéochimie, l’écologie et l’évolution de la tolérance et de l’accumulation du Cu et du Co chez les cupro-cobaltophytes facultatives restent à ce jour peu connues, surtout pour le Co. La stratégie de recherche repose sur une approche interdisciplinaire (biogéochimie, écologie fonctionnelle et écologie évolutive) qui s’articule autour de travaux réalisés à la fois sur le terrain et en conditions contrôlées : sur un sol et en hydroponie. Chez une métallophyte facultative modèle à large amplitude écogéographique : Anisopappus chinensis (Asteraceae), la thèse s’attache à : (i) caractériser la variation phénotypique de l’accumulation du Cu et du Co et connaître les facteurs édaphiques qui l’influence, pour mieux comprendre la disponibilité du Cu et du Co dans les sols métallifères, (ii) tester l’influence de facteurs chimiques du sol sur la mobilité du Cu et du Co dans les sols et sur l’accumulation foliaire de Cu et de Co, (iii) étudier la réponse adaptative de populations métallicoles et non-métallicoles provenant d’habitats très contrastés, et leur réponse plastique au Co, (iv) examiner la variabilité génétique de la capacité à tolérer et à accumuler le Cu et le Co entre des populations métallicoles et non-métallicoles.Les variations d’accumulation de Cu et de Co observées au sein des populations métallicoles d’A. chinensis seraient en grande partie influencées par la teneur en matière organique et les concentrations totales en manganèse et en fer des sols de la zone racinaire. Le Cu et le Co potentiellement dans la solution du sol ne sembleraient pas être les seules fractions expliquant les variations d’accumulation. Les concentrations de Cu et de Co liées respectivement aux oxydes de manganèse et à la matière organique pourraient également représenter une concentration significativement disponible pour les plantes. En culture, une variation dans la mobilité du Cu et du Co dans le sol n’expliquait pas nécessairement une variation dans les concentrations foliaires mesurées chez A. chinensis. La disponibilité du Cu et du Co en milieu métallifère est un concept difficile à appréhender, élément- et espèce-dépendant, qui serait la résultante d’interactions biogéochimiques complexes à l’échelle de la rhizosphère, impliquant les microorganismes.Il existe une réponse adaptative à la diversité d’habitats chez A. chinensis traduite par des hauteurs de plantes et surfaces de feuilles plus faibles chez les populations métallicoles étudiées. Malgré des sols très contrastés chimiquement entre habitats métallifères et non-métallifères, très peu de variations intraspécifiques de la surface foliaire spécifique et des concentrations foliaires en nutriments ont été observées. La très faible réponse plastique au Co chez les populations étudiées d’A. chinensis semble mettre en évidence une homéostasiedes traits fonctionnels foliaires mesurés, qui pourrait expliquer la large niche écologique de l’espèce.La tolérance au Cu n’est pas un attribut vérifié à l’échelle de l’espèce chez A. chinensis. Celle-ci semblerait s’exprimer dans des conditions édaphiques bien particulières sur les sols métallifères, et pourrait être le fruit de processus rhizosphériques impliquant les microorganismes. Une différenciation génétique de la tolérance au Co a été observée chez les populations métallicoles des sols enrichis en Co. Une relation positive entre le degré de tolérance au Co et le niveau de concentration en Co dans le sol natif existerait. Pour la première fois chez une métallophyte, une variation génétique de l’accumulation de Co a été mise en évidence. L’hyperaccumulation du Cu et du Co chez les métallophytes, à de faibles concentrations disponibles dans les sols, n’existerait pas. Anisopappus chinensis provenant de sols enrichis en Co constitue un matériel végétal remarquable à valoriser, puisque s’exprimant comme une véritable accumulatrice de Co en conditions contrôlées.
Soils enriched in trace metal elements (TE) (i.e., metalliferous soils) constitute original model systems to study ecological and evolutionary processes occurring among their associated vegetation. In Southeastern central Africa (Katanga), a unique succession of natural copper (Cu) and cobalt (Co) outcrops occurs; the so-called “Katangan Copperbelt”. Here, scattered over 300 Km, geographically isolated “copper hills” form remarkable ecosystems that strongly contrast with the surrounding clear forest.Soil Cu and Co concentrations of those hills can be 1000- to 10 000-fold higher than in normal soils. These extreme ecological conditions have selected a unique vegetation of metallophytes, also called cupro-cobaltophytes. Some plants have the fascinating peculiarity to accumulate Cu and Co in their tissues up to extremely phytotoxic concentrations and are called “hyperaccumulators”. High misunderstood inter and intraspecific variations of Cu and Co accumulation are observed within this flora. These variations could be explained by variations in Cu and Co availability in soils, but also by inter and intraspecific variations in Cu and Co tolerance mechanisms and capacity to accumulate Cu and Co.Some cupro-cobaltophytes are restricted to metalliferous habitats (i.e., endemic metallophytes) and some are widely distributed, with populations on normal soils (i.e., facultative metallophytes). These latter are of high interest to study the ecology and evolution of Cu and Co tolerance and accumulation.Biogeochemistry, ecology and evolution of Cu and Co tolerance and accumulation in facultative cupro-cobaltophytes remains poorly understood, especially for Co. Research strategy was to develop a transdisciplinary approach (biogeochemistry, functional ecology and evolutionary ecology) based on field works and experiments (using soil or nutrient solution). For Anisopappus chinensis (Asteraceae), a broad-niched and geographically widespread facultative metallophyte chosen as model species, this PhD thesis aims at: (i) investigate the phenotypic variation of Cu and Co accumulation, and the influencing soil chemical factors, to understand better Cu and Co availability in metalliferous soils, (ii) test the influence of soil chemical factors on Cu and Co mobility in soil and accumulation, (iii) studyadaptive response of metallicolous (M) and non-metallicolous (NM) populations from contrasted habitats, and their plastic response to Co, (iv) examine the genetic variation in Cu and Co tolerance and accumulation between M and NM populations.Copper and Co accumulation variations among M populations of A. chinensis are clearly influenced by organic matter content and soil total manganese and iron concentrations in the rooting zone. Mobile Cu and Co concentrations, potentially in the soil solution, would not only explain Cu and Co accumulation variations. Copper and Co bound to respectively manganese oxides and organic matter could also represent Cu and Co available concentrations for plants. In experimental conditions, variations in Cu and Co mobility would not necessary explained variations in foliar Cu and Co concentrations in A. chinensis. Copper and Co availability is a complex element- and species-specific mechanism, closely related to all biogeochemical processes that occur in the rhizosphere. Important role of microorganisms is expected.Adaptive response to habitats has been highlighted for A. chinensis. Metallicolous plants had consistently lower height and leaf size than NM plants. Despite strong contrast in the soil chemistry between metalliferous and non-metalliferous habitats, very few variations in specific leaf area and leaf nutrient concentrations was observed between M and NM populations. The low plastic response to Co seems to reveal homeostasis of the studied functional leaf traits, which might explain the broad ecological niche of the species.Tolerance to Cu is not constitutive of A. chinensis and would be express under specific growth conditions in nature. Expression of Cu tolerance could be the result of specific soil-plant-microorganisms processes. Genetic differentiation in Co tolerance has been demonstrated in M populations from Co-enriched soils. Positive relationship between the level of tolerance to Co and the concentration of Co in the native soil may exist. Genetic variability of Co accumulation has been demonstrated for the first time in a metallophyte. Cu and Co hyperaccumulation at low available concentration in the soil would not exist in metallophytes. Anisopappus chinensis form Co-enriched soils expressed as a genuine Co accumulator and thus, constitute an interesting valuable biological model.