par Kordyukov, Yuri;Lejmi, Mehdi ;Weber, Patrick
Référence Journal of geometry and physics, 107, page (114-135)
Publication Publié, 2016-09
Référence Journal of geometry and physics, 107, page (114-135)
Publication Publié, 2016-09
Article révisé par les pairs
Résumé : | We define Seiberg-Witten equations on closed manifolds endowed with a Riemannian foliation of codimension 4. When the foliation is taut, we show compactness of the moduli space under some hypothesis satisfied for instance by closed K-contact manifolds. Furthermore, we prove some vanishing and non-vanishing results and we highlight that the invariants may be used to distinguish different foliations on diffeomorphic manifolds. |