Article révisé par les pairs
Résumé : For many applications, there is an increasing demand for low cost, high-resolution inertial sensors, which are capable of operating in harsh environments. Recently, a prototype of small optical inertial sensor has been built, using a Michelson interferometer. A resolution of 3 pm/Hz has been obtained above 4 Hz using only low cost components. Compared to most state-of-the-art devices, this prototype did not contain any coil, which offers several important advantages, including a low thermal noise in the suspension and a full compatibility with magnetic environments (like particle collider). On the other hand, the Michelson is known to be tricky to tune, especially when one attempts to miniaturize the sensor. In this paper, we will propose a novel concept of inertial sensor, based on a linear encoder. Compared to the Michelson, the encoder is much more easy to mount, and the calibration more stable. The price to pay is a reduced resolution. In order to overcome this limitation, we amplify mechanically the relative motion between the support and the inertial mass. First results obtained with the new sensor will be discussed, and compared with the Michelson inertial sensor.