par Budroni, Marcello ;De Wit, Anne
Référence Physical review. E, Statistical, nonlinear, and soft matter physics, 93, 6, 062207
Publication Publié, 2016-06
Article révisé par les pairs
Résumé : When two solutions containing separate reactants A and B of an oscillating reaction are put in contact in a gel, localized spatiotemporal patterns can develop around the contact zone thanks to the interplay of reaction and diffusion processes. Using the Brusselator model, we explore analytically the deployment in space and time of the bifurcation diagram of such an A+B→ oscillator system. We provide a parametric classification of possible instabilities as a function of the ratio of the initial reactant concentrations and of the reaction intermediate species diffusion coefficients. Related one-dimensional reaction-diffusion dynamics are studied numerically. We find that the system can spatially localize waves and Turing patterns as well as induce more complex dynamics such as zigzag spatiotemporal waves when Hopf and Turing modes interact.