Résumé : As rock textures reflect the physical conditions and the mechanisms of formation of the rocks, new approaches are used for improving texture analyses, both qualitatively and quantitatively. Pioneer work has recently boosted interest in fractal analysis for quantifying and correlating patterns. Fractal-like patterns relate to a degree of multiscale organization, and fractal dimensions (FD) and their potential variations can be used to infer the physical conditions of rock formation at various scales of observation. Here, we characterize quantitatively the shape and distribution of orthopyroxene grains in ultramafic xenoliths in terms of FD and their relation with temperature of equilibration. Fractal analysis has been applied to several populations of mantle xenoliths: 7 xenoliths collected in the vicinity of Pico Santa Isabel on Bioko Island, an alkaline basaltic volcano in oceanic domain (Gulf of Guinea, Equatorial Atlantic), 9 samples from Sangilen, in the Agardag alkaline lamprophyre dyke (Russia), and 11 samples form Śnieżnik (Lutynia, Poland), in the continental domain. Fractal analysis has been conducted to characterize the degree of complexity of the petrographic textures: it is indeed known that large values of FD are associated to more complex textures. The correlation here observed between the orthopyroxene fractal dimension and the temperature of equilibration suggests that FD captures a significant textural feature directly related to the temperature (i.e. generated by a temperature-controlled process). The significant difference in the FD–T correlation observed for the continental and oceanic mantle domains suggests that the mechanical and rheological behaviour is distinct in the oceanic and continental lithospheres. These first promising results should be confirmed by analysing other mantle suites of rocks in different geodynamic settings. Copyright © 2015 John Wiley & Sons, Ltd.