Résumé : In this paper, we study how to obtain a quantitative correspondence between the dynamics of the microscopic implementation of a robot swarm and the dynamics of a macroscopic model of nest-site selection in honeybees. We do so by considering a collective decision-making case study: the shortest path discovery/selection problem. In this case study, obtaining a quantitative correspondence between the microscopic and macroscopic dynamics—the so-called micro–macro link problem—is particularly challenging because the macroscopic model does not take into account the spatial factors inherent to the path discovery/selection problem. We frame this study in the context of a general engineering methodology that prescribes the inclusion of available theoretical knowledge about target macroscopic models into design patterns for the microscopic implementation. The attainment of the micro–macro link presented in this paper represents a necessary step towards the formalisation of a design pattern for collective decision making in distributed systems. © 2015, Springer Science+Business Media New York.