par Gaffney, L.P.;Heenen, Paul-Henri ; [et al.]
Référence Physical review. C. Nuclear physics, 91, 6, 064313
Publication Publié, 2015-06
Article révisé par les pairs
Résumé : Background: Shape coexistence in heavy nuclei poses a strong challenge to state-of-the-art nuclear models, where several competing shape minima are found close to the ground state. A classic region for investigating this phenomenon is in the region around Z=82 and the neutron midshell at N=104. Purpose: Evidence for shape coexistence has been inferred from α-decay measurements, laser spectroscopy, and in-beam measurements. While the latter allow the pattern of excited states and rotational band structures to be mapped out, a detailed understanding of shape coexistence can only come from measurements of electromagnetic matrix elements. Method: Secondary, radioactive ion beams of Rn202 and Rn204 were studied by means of low-energy Coulomb excitation at the REX-ISOLDE in CERN. Results: The electric-quadrupole (E2) matrix element connecting the ground state and first excited 21+ state was extracted for both Rn202 and Rn204, corresponding to B(E2;21+→01+)=29-8+8 and 43-12+17 W.u., respectively. Additionally, E2 matrix elements connecting the 21+ state with the 41+ and 22+ states were determined in Rn202. No excited 0+ states were observed in the current data set, possibly owing to a limited population of second-order processes at the currently available beam energies. Conclusions: The results are discussed in terms of collectivity and the deformation of both nuclei studied is deduced to be weak, as expected from the low-lying level-energy schemes. Comparisons are also made to state-of-the-art beyond-mean-field model calculations and the magnitude of the transitional quadrupole moments are well reproduced.