par Lopez Honorez, Laura
Président du jury Henneaux, Marc
Promoteur Tytgat, Michel
Publication Non publié, 2007-06-26
Thèse de doctorat
Résumé :

The success of Big Bang Nucleosynthesis (BBN) combined with the detailed analysis of the small imperfections of the Cosmic Microwave Background blackbody spectrum lead to the conclusion that most of the matter content of our universe is made of some non-baryonic material, the dark matter!

In this thesis, we review the compiling indications of dark matter and the so-called freeze-out mechanism which may settle the relic density of the species in the framework of the standard Big Bang model. We also examine principally two methods of detection of dark matter, direct and indirect detection searches.

Let us stress that the Standard Model on its own is unable to provide enough aspirants for the role of dark matter. As a consequence, one has to dig into the tremendous domain of physics "Beyond the Standard Model" in order to have a chance to elucidate the problem of the missing mass.

In this thesis in particular, we consider the Inert Doublet Model (IDM) which includes an additional Higgs doublet, enclosing two neutral scalars candidates for dark matter. We invoke the Standard freeze-out mechanism for the production of dark matter. We get then dark matter candidates in two rather separate mass ranges, one between 40 and 80 GeV, the other one between 400 GeV and 1 TeV. We also show that dark matter annihilation at the galactic center can be at the origin of a gamma-ray flux which can be probed by the future GLAST experiment.

We address a low reheating temperature scenario for the genesis of dark matter in a Left-Right symmetric extension of the Standard Model. The candidate for dark matter is a MeV right-handed neutrino and we show that a baryon-dark matter interaction at the galactic center can be the source of the low energy positrons responsible for the 511 keV gamma-ray excess observed by the INTEGRAL experiment in the galactic bulge region.

Finally, prompted by the possibility to explain the baryon and dark matter rather similar abundances by one single "Matter Genesis" mechanism, we study a non-thermal production mechanism for dark matter. The framework is also Left-Right symmetric and dark candidate is a ~3 GeV right handed neutrino.