par Gross, Roderich
Président du jury Preumont, André
Promoteur Dorigo, Marco
Publication Non publié, 2007-10-12
Thèse de doctorat
Résumé : We look at robotic systems made of separate discrete components that, by self-assembling, can organize into physical structures of growing size. We review 22 such systems, exhibiting components ranging from passive mechanical parts to mobile

robots. We present a taxonomy of the systems, and discuss their design and function. We then focus on a particular system, the swarm-bot. In swarm-bot, the components that assemble are self-propelled modules that are fully autonomous in power, perception, computation, and action. We examine the additional capabilities and functions self-assembly can offer an autonomous group of modules for the accomplishment of a concrete task: the transport of an object. The design of controllers is accomplished in simulation using

techniques from biologically-inspired computing. We show that self-assembly can offer adaptive value to groups that compete in an artificial evolution based on their fitness in task performance. Moreover, we investigate mechanisms that facilitate the design of self-assembling systems. The controllers are transferred to the physical swarm-bot system, and the capabilities of self-assembly and object transport are extensively evaluated in a range of different environments. Additionally, the controller for self-assembly is transferred and evaluated on a different robotic system, a super-mechano colony. Given the breadth and quality of the results obtained, we can say that the swarm-bot qualifies as the current state of the art in self-assembling robots. Our work supplies some initial evidence (in form of simulations and experiments with the swarm-bot) that self-assembly can offer robotic systems additional capabilities and functions useful for the accomplishment of concrete tasks.