Président du jury Devière, Jacques
Promoteur Abramowicz, Daniel
Publication Non publié, 2007-10-08
Résumé : | Acute allograft rejection remains a major problem in solid organ transplantation, because rejection may lead to acute or chronic loss of graft function. The failure of certain anti-rejection prophylactic treatments suggests that several unexpected pathways might be involved in the rejection process. The aim of our experiments was to investigate the effector mechanisms responsible for skin graft rejection in mice. To adress this question, we took advantage of the possibility to restrict the alloimmune response to isolated allogeneic MHC class II molecules or to isolated minor transplantation antigens, combined with the possibility to study separately the response of CD4+ or CD8+ T cells in mice deficient for Th1 or Th2 cytokines or cytotoxic molecules. We used the bm12 skin graft combination (C57BL/6 H2Kbm12 grafted on C57BL/6 H2Kb) as a model of single MHC class II disparity and the b2microglobulin skin graft model (C57BL/6 b2m+/+ grafted on C57BL/6 b2m-/-) as a model of minor transplantation antigen disparity. Our goal was to engage a limited number of effectors, trying in a second time to block each rejection pathway selectively. We showed that Fas/FasL-mediated CD4+ T cells cytotoxicity, eosinophil recruitment, activation and degranulation induced by Th2 derived cytokines, and CD4-derived IFN-g production are involved in the rejection of grafts bearing either a single MHC class II disparity or b2m-derived minor histocompatibilty antigens. In addition, rejection of MHC class II disparate skin grafts also includes the participation of neutrophils, in particular conditions where the occurrence of the Th2/eosinophil pathway was prevented. Altogether, our data show a multiplicity and a redundancy of the effector pathways participating in allograft rejection. Among the different effectors pathways identified, including effectors from both innate and adaptive immune systems, some act synergistically, whereas others act as alternative pathways, depending of the degree of donor-recipient mismatch. |