Thèse de doctorat
Résumé : In this work, we present a way to extend Ant Colony Optimization (ACO), so that it can be applied to both continuous and mixed-variable optimization problems. We demonstrate, first, how ACO may be extended to continuous domains. We describe the algorithm proposed, discuss the different design decisions made, and we position it among other metaheuristics.

Following this, we present the results of numerous simulations and testing. We compare the results obtained by the proposed algorithm on typical benchmark problems with those obtained by other methods used for tackling continuous optimization problems in the literature. Finally, we investigate how our algorithm performs on a real-world problem coming from the medical field—we use our algorithm for training neural network used for pattern classification in disease recognition.

Following an extensive analysis of the performance of ACO extended to continuous domains, we present how it may be further adapted to handle both continuous and discrete variables simultaneously. We thus introduce the first native mixed-variable version of an ACO algorithm. Then, we analyze and compare the performance of both continuous and mixed-variable

ACO algorithms on different benchmark problems from the literature. Through the research performed, we gain some insight into the relationship between the formulation of mixed-variable problems, and the best methods to tackle them. Furthermore, we demonstrate that the performance of ACO on various real-world mixed-variable optimization problems coming from the mechanical engineering field is comparable to the state of the art.