Président du jury Buess Herman, Claudine
Promoteur Gaspard, Pierre
Publication Non publié, 2010-06-28
Résumé : | L'objectif de notre thèse de doctorat est d’étudier et de décrire les propriétés chimiques et mé- caniques du moteur moléculaire F1 -ATPase. Le moteur F1 -ATPase est un moteur rotatif, d’aspect sphérique et d’environ 10 nanomètre de rayon, qui utilise l’énergie de l’hydrolyse de l’ATP comme car- burant moléculaire. Des questions fondamentales se posent sur le fonctionnement de ce moteurs et sur la quantité de travail qu’il peut fournir. Il s’agit de questions qui concernent principalement la thermodynamique des processus irréversibles. De plus, comme ce moteur est de taille nanométrique, il est fortement influencé par les fluctuations moléculaires, ce qui nécessite une approche stochastique. C’est en créant deux modéles stochastiques complémentaires de ce moteur que nous avons contribué à répondre à ces questions fondamentales. Le premier modèle discuté au chapitre 5 de la thèse, est un mod- èle continu dans le temps et l’espace, décrit par des équations de Fokker-Planck, est construit sur des résultats expérimentaux. Ce modèle tient compte d’une description explicite des fluctua- tions affectant le degré de liberté mécanique et décrit les tran- sitions entre les différents états chimiques discrets du moteur, par un processus de sauts aléatoires entre premiers voisins. Nous avons obtenus des résultats précis concernant la chimie d’hydrolyse et de synthèse de l’ATP, et pour les dépendences du moteur en les différentes variables mécaniques, à savoir, la friction et le couple de force extérieur, ainsi que la dépendence en la température. Les résultats que nous avons obtenus avec ce modèle sont en ex- cellent accord avec les observations expérimentales. Le second modèle est discret dans l’espace et continu dans le temps et est décrit dans le chapitre 6. L’analyse des résultats obtenus par simulations numériques montre que le modèle est en accord avec les observations expérimentales et il permet en outre de dériver des grandeurs thermodynamiques analytique- ment, décrites au chapitre 4, ce que le modèle continu ne permet pas. La comparaison des deux modèles révele la nature du fonction- nement du moteur, ainsi que son régime de fonctionnement loin de l’équilibre. Le second modèle a éte soumis récemment pour publication. |